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SUMMARY

The ability of mobile robots to locomote safely in unstructured environments will be

a cornerstone of robotics of the future. Introducing robots into fully unstructured environ-

ments is known to be a notoriously difficult problem in the robotics field. As a result, many

of today’s mobile robots are confined to prepared level surfaces in laboratory settings or rel-

atively controlled environments only. One avenue for deploying mobile robots into unstruc-

tured settings is to utilize elevated wire networks. The research conducted under this thesis

lays the groundwork for developing a new class of wire-borne underactuated robots that

employs brachiation – swinging like an ape – as a means of locomotion on flexible cables.

Executing safe brachiation maneuvers with a cable-suspended underactuated robot is

a challenging problem due to the complications induced by the cable dynamics and vi-

brations. This thesis studies, from concept through experiments, the dynamic modeling

techniques and control algorithms for wire-borne underactuated brachiating robots, to de-

velop advanced locomotion strategies that enable the robots to perform energy-efficient

and robust brachiation motions on flexible cables. High-fidelity and approximate dynamic

models are derived for the robot-cable system, which provide the ability to model the in-

teractions between the cable and the robot and to include the flexible cable dynamics in

the control design. An optimal trajectory generation framework is presented in which the

flexible cable dynamics are explicitly accounted for when designing the optimal swing tra-

jectories. By employing a variety of control-theoretic methods such as robust and adaptive

estimation, control Lyapunov and barrier functions, semidefinite programming and sum-of-

squares optimization, a set of closed-loop control algorithms are proposed. A novel hard-

ware brachiating robot design and embodiment are presented, which incorporate unique

mechanical design features and provide a reliable testbed for experimental validation of the

wire-borne underactuated brachiating robots. Extensive simulation results and hardware

experiments demonstrate that the proposed multi-body dynamic models, trajectory opti-

mization frameworks, and feedback control algorithms prove highly useful in real world

settings and achieve reliable brachiation performance in the presence of uncertainties, dis-

turbances, actuator limits and safety constraints.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Brachiation is a form of swinging [1, 2] used efficiently by primates and other mammals

to locomote within unstructured environments which contain networks of elevated support

structures, such as tree canopies. Akin to walking, brachiation is adaptable to a dynamic en-

vironment, e.g., non-uniformly spaced and oriented handholds, possibly interspersed with

obstacles, and likely prone to vibrations and other disturbances.

As the demand for automation and services provided by robotic systems grows, there is

an increasing need to be able to deploy mobile robots into unstructured environments such

as farm fields [3], urban areas [4], and forests [5]. Reliable locomotion in these types of

environments has, to date, been difficult to achieve without the use of complex multi-legged

robots [6, 7, 8]. In fact, in unstructured environments ranging from cities to farmland, the

ability of mobile robots to locomote in a robust manner independent of human intervention

is at once both extremely important, and extremely challenging. Wheeled robots suffer

from a number of known limitations and cannot traverse obstacles larger than about the size

of the wheel radius. Likewise, the current state-of-the-art in legged robots is not sufficiently

advanced for them to be deployed in an autonomous fashion in outdoor settings. Aerial

robots and UAVs, while able to operate free from ground obstructions, have limited flight

time (typically on the order of tens of minutes) due to high power consumption and are

Figure 1.1: A gibbon performing brachiation maneuver [2]. Reproduced with permission
of The Licensor through PLSclear.
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potentially dangerous to operate. As a result, many of today’s mobile robots are confined

to prepared level surfaces in controlled environments only.

One avenue of deployment for mobile robots into unstructured settings is to utilize ele-

vated wire networks, either pre-existing or installed specifically to enable robot locomotion.

Many operating environments, from urban areas to pastures, are equipped with networks

of elevated wires that, in addition to their original purpose, can also serve as a locomotive

infrastructure for mobile robots. For instance, cities are equipped with power or telephone

lines. Vineyards are equipped with wires that support plant growth. Indeed, preexisting

wire networks are ubiquitous in many environments that can benefit from the presence of

mobile robots, but that otherwise may be inaccessible due to locomotion issues. Even in

cases where wire networks do not already exist, they can oftentimes be easily installed. By

leveraging these wires for locomotion, a host of new environments are opened up where

mobile robots can “live” and serve in a variety of important roles. As an example, consider

a farm field in which a wire is installed over each crop row, or a city with pre-existing power

lines. A robot capable of traversing the wire network will thus be able to access areas of

interest without needing to physically interact with complex obstacles.

1.1 Motivation

One attractive aspect of brachiation, compared to other locomotion techniques such as

legged locomotion, is that rather than avoiding obstacles, brachiating robots attempt to

leverage obstacles as support structures to enable mobility. In fact, brachiation can be

viewed as a generalized version of walking in which the contacts with the ground surface

or obstacles are adhesive, i.e., the feet of a walking robot become grippers. This general-

ization allows brachiating robots to be deployed to a wide range of environments, as long

as this adhesion or gripping capability can be effectively implemented. The magnetic foot

brachiating robot reported by Mazumdar and Asada [9], which is designed to walk inverted

below steel bridges, exemplifies this notion of brachiating robots as generalized walking
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robots.

Despite the fact that the past several decades has seen increasing interest in the use of

brachiation as a locomotion modality for mobile robots [10, 11], they have not yet emerged

in real life scenarios. A major challenge in deploying brachiating robots in real life ap-

plications comes from the uncertainties and disturbances present in outdoor environments.

Moreover, in the current literature, brachiating robots have been researched almost exclu-

sively for rigid bars/supports [12, 13]. However, this has limited applicability in real-world

situations since many environments may not be easily configurable to accommodate rigid

structures. By contrast, wire traversing robots [14, 15] have a better chance of getting de-

ployed in real life applications, as it is relatively easier to install a flexible wire or cable in

outdoor environments.

There is great potential for wire-traversing robots to be adopted in real life settings,

ranging from smart cities applications such as monitoring and surveillance, traffic manage-

ment, and public safety, to industrial domains such as power line inspection and precision

agriculture. Any task that involves traversal of unstructured environments, or coexistence

with humans in a shared space, is potentially well-suited for execution by wire-borne robots

since they offer predictable, reliable locomotion and significant mission flexibility. Wire-

borne robots essentially offer a mechanism to introduce mobile robots into unstructured

environments, provided that a cable network is available for locomotion. Fortunately, pre-

existing wire networks are ubiquitous (or could potentially be installed) in many environ-

ments that may benefit from the presence of mobile robots, but that otherwise may be

inaccessible due to locomotion issues. For instance, existing power transmission lines or

the overhead wires for trolley/bus systems in urban areas may be leveraged as a medium for

locomotion by wire-borne robots that serve as reconfigurable sensor networks for adaptive

surveillance or traffic management within cities. Likewise, wire-borne robots could be used

for persistent plant health monitoring in precision agricultural applications. Such mobile

robots may also play a role in wildlife monitoring and protection. Many wildlife sanctuar-
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ies contain vast arrays of wire networks meant originally for containment, but which also

could be easily used for the proposed robots. In addition to the broad range of applications

mentioned above, there are clear applications of this technology to numerous other domains

including conservation, security, consumer technology, and even home healthcare.

Examples of wire-traversing robots have recently emerged as rolling [15, 16] and brachi-

ating [14] robots. Brachiating robots offer unique advantages over robots that simply roll

along a wire in that they have the capability to bypass obstacles (e.g. tree branches or aerial

marker balls) as well as to swing to adjacent cables. However, the vibrations in the flexible

wire induced by locomotion or external disturbances such as winds may significantly com-

plicate the control of the robot. Moreover, as brachiating robots move off rigid bars and

out of laboratories, the notion of safety will come to attention, as the robot would need to

operate in a safe region to avoid collisions with obstacles in the environment.

When considering controller design and modeling and simulation of such systems, sev-

eral challenges arise. First, the dynamics of the coupled robot-cable system are complex

and high-order. Second, measuring or estimating the states of the cable during a robot

swing is mostly infeasible due to sensing limitations. Finally, robustifying the control de-

sign to enable the robot to locomote on such a vibrating medium is challenging due to the

wide variety of initial conditions that may be encountered and the inherent uncertainty in

the system dynamics. This is especially important in real-world settings where safe and

reliable performance of the robot must be guaranteed. Developing solutions to these chal-

lenges will be an important step in transitioning brachiation robots from their current status

as curious laboratory demos to practical robots that can solve real world problems.

Considering the challenges described above, the ultimate goal of this thesis is to de-

sign and control a new type of robust, energy efficient, and low-cost brachiating robot, that

can be cost-effectively deployed in situ and provide tangible benefits to real world sys-

tems with different applications. Note that a key aspect of our vision for these wire-borne

robots is that they can be made small, low-power, autonomous, and to a certain extent
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inconspicuous and symbiotic with their surroundings. The development and real world im-

plementation of new locomotion and control strategies for such brachiating robots will be

instrumental in eventually bridging the gap between research and real world applications,

and achieving desired requirements of an automated system: low-cost and scalable, capable

of near-persistent operation, and capable of operating robustly in a real world environment.

1.2 Problem Formulation

Figure 1.2: The wire-borne underactuated brachiating robot hardware prototype.

The present thesis has as its objectives the dynamic modeling, robotic system design,

motion planning, feedback control synthesis, and experimental validation of a wire-borne

underactuated brachiating robot, a mobile robot that moves using its arms similar to an ape

moving from branch to branch, by swinging like a pendulum attached to a flexible cable.

The robot cannot apply torque at its grip, since it has an unactuated joint on the pivot arm.

Therefore, this type of robot is categorized as an underactuated system by having fewer

actuators than degrees of freedom.

The work presented here involves a strong coupling between dynamic modeling, control

theory, mechanical design, simulation analysis and experimental testing. Wire-traversing
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brachiating robots pose interesting mobility challenges, especially when engineering con-

straints of robustness and low-cost are considered. Such robots fall into a broader class of

highly-dynamic robotics: underactuated mobile robots which exploit gravity and momen-

tum and involve contact with the environment. We study the kinematics, dynamics and

control methods for brachiating robots to develop advanced locomotion strategies, which

will permit the robot to perform energy-efficient and robust brachiation motions, in the

presence of unmodeled dynamics, estimation uncertainties, safety constraints, and actuator

limits.

An optimal control strategy is developed to derive desired optimal reference trajecto-

ries for brachiation motions. The dynamical model is improved by including the flexible

cable model in the design in order to capture the behavior of the system and its response

with respect to the cable motion/vibration, which enhances control of the robot’s dynamic

locomotion. Four feedback control algorithms, namely a parameterized time-varying lin-

ear quadratic regulator (TVLQR), a robust sum-of-squares (SOS) optimization-based, an

adaptive sliding mode control (ASMC), and a robust and adaptive quadratic programming

(QP)-based control framework, are synthesized for the task of underactuated, torque limited

brachiation on flexible cables, in order to identify the exact feedback control laws neces-

sary to generate reliable and robust brachiating maneuvers, enabling wire-borne brachiating

robots to locomote safely in a robust manner without human intervention and in the pres-

ence of constraints, uncertainties and disturbances caused by flexible cables and obstacles.

The resultant control motions and performances are characterized and compared via an ex-

tensive Monte Carlo analysis with respect to various evaluation metrics, including energy,

accuracy and feasibility.

A mechanical design and the associated mechatronic systems are presented for brachiat-

ing robots traversing flexible cables, which will seek to balance the reliable wire-brachiating

capability with size and power restrictions. The novel wire-traversing mobile robot to be

developed and fabricated in this work is designed to attach to, and traverse, elevated wires,
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and provides a suitable testbed for experimental validation of the proposed control frame-

works in this thesis. The proposed robot hardware is shown in Figure 1.2. The robotic

system envisioned here is comprised of a two-link brachiating robot with a single actuator

situated at the joint between the robot’s two arms, and two active grippers at two ends of

the robot which perform necessary grasping for brachiation. The robot is intended for use

with flexible cables, which represents a departure from the literature in which robot brachi-

ation has been reported almost exclusively for relatively rigid rods/supports. To achieve a

cost-effective solution, not only does the brachiating robot itself need to be low-cost but

the cable infrastructure it inhabits must be as well. To this end, we employ a simple extra

flexible cable, elevated and held up by only two supports at each end.

In this work, simulation studies are used to predict and evaluate the performance of the

proposed dynamic models and control methods. Once performance is deemed satisfactory

in simulation, the proposed control and locomotion algorithms are further validated in an

experimental setting by conducting extensive real-world experiments on the brachiating

robot prototype traversing a flexible cable.

1.3 Related Work

Over the past decade, a variety of wire-borne robots has been designed that leverages

wheels for locomotion. Nearly all of these robots have been developed solely for the

purpose of powerline inspection: the robots are designed to roll along miles of elevated

cable and identify areas of the transmission line that require maintenance. Some examples

include the transmission line inspection robot built by the Electric Power Research Insti-

tute [17], the Cable Crawler robot developed at ETH Zurich [18], and the HiBot Expliner

robot [19]. Because these robots roll along the wire (rather than brachiating), bypassing

an obstacle poses a major challenge for these systems. Upon encountering a powerline

support, these robots typically execute a series of slow, choreographed maneuvers in a

quasi-static fashion to disconnect from one wire, circumvent the obstacle, and attach on

7



the opposite side. Such complex maneuvers typically require large numbers of actuators

and sensors and can take many minutes to complete. As a result, these powerline inspec-

tion robots have tended to be relatively expensive and slow moving. These limitations are

generally acceptable for powerline inspection missions but are less desirable for other use

cases such as urban and agricultural monitoring. For the most part, previous attempts to

design wire-traversing robots have resulted in designs that are large, somewhat cumber-

some, and very expensive – the kinds of robots that are designed to be built in quantities

of one or two. In contrast, the mobile robot envisioned in this thesis, which will regularly

traverse a simple flexible wire and will operate in and amongst humans, will need to be

fundamentally different from these heavy, expensive, and cumbersome machines.

The field of brachiating robots has also been explored extensively over the past two

decades. However, the research efforts on control of brachiating robots have mainly fo-

cused on brachiation on rigid structures, such as ladders and monkey bars. The concept of

a brachiating robot was first introduced by Fukuda [20, 21] as a new type of mobile robot

that could make use of the efficient swing motion of a pendulum due to gravity to locomote

on ladder bars (shown in Figure 1.3(a)). Later, Saito et al. [22, 10, 23] proposed a heuris-

tic control algorithm by repetitive trial and error, followed by a reinforcement learning

implementation [24], for a two-degree-of-freedom robot swinging on horizontal parallel

bars. The Target Dynamics algorithm was proposed in [12] to enable continuous locomo-

tion of a simplified two-link brachiating robot over several rungs of a ladder. Using this

method, instead of handling the system dynamics via reference trajectories, the control

task is achieved by representing the robot dynamics with a simplified single pendulum as a

lower dimensional target. However, the controller requires knowledge of the exact dynam-

ics of the robot. Spong in [25] and [26] proposed a partial feedback linearization method

for the swing-up control of the “Acrobot”, a two-link underactuated robot with a similar

mechanism to brachiating robots. Zero-energy cost motions for passive brachiating mod-

els attached to a rigid ceiling were investigated in [27], proposing mathematical solutions
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(a) (b)

Figure 1.3: Examples of brachiating robots in the literature: (a) brachiation robot by
Fukuda [10], (b) Mag-Foot robot by Mazumdar [9] designed for bridge inspection.

that do not demand any joint torque at any time. Mazumdar and Asada [9, 11] designed

an underactuated brachiating robot with magnetic “feet” for steel bridge inspection, which

incorporates passive magnets for attachment to the bridge structure, and uses a feedback

linearization-based controller to track optimal motion trajectories. Their brachiating robot,

called “Mag-Foot”, is shown in Figure 1.3(b). Similarly, Gibbot [28], a brachiating robot

to locomote vertical walls, utilized electromagnets hands and an open-loop control method

to perform “downhill” and “uphill” brachiation gaits. In [29], a PD control and an adaptive

robust control were employed to derive energy-minimizing swing trajectories and track op-

timal trajectories for a two link brachiating robot with uncertain kinematic and dynamic

parameters moving between fixed supports, showing a 25% energy reduction compared to

the target dynamics method proposed in [12]. An optimal control framework to exploit pas-

sive dynamics of a two-link brachiating robot with a variable stiffness actuation mechanism

was presented in [30]. Model predictive control has also been explored in the context of

brachiation, both in a nonlinear [31] and linearized form [32]. A model-free sliding mode

control scheme was presented in [33, 34] to control symmetric and asymmetric robotic

brachiators along a rigid bar with an upward slope.

An interesting mechanical design was proposed in [35] to address the wire-traversing
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problem through brachiation, demonstrating different locomotion modalities along a flex-

ible wire. However, its methods of locomotion provide no feedback control used for

traversing the cable, and therefore prone to failure for real-world applications. More re-

cently, a three-link brachiation robot was presented in [13], which used an iterative lin-

ear quadratic regulator (LQR) algorithm for trajectory generation and a combination of a

cascaded proportional-integral-derivative (PID) control and an input-output linearization

controller to track desired trajectories and swing along monkey bars. Each of these meth-

ods has drawbacks that include some combination of long training periods, infeasibility of

real-time implementation, strong performance dependency on initial conditions, not being

robust against uncertainties and disturbances, or control chattering phenomena [36] that

can be detrimental to actuators.

As is evident in the literature review above, the problem of brachiating robot control on

a flexible medium has been mostly neglected in the literature, due to the uncertainties and

challenges created by introducing a flexible body into the system. Modifying the swing

trajectory of a brachiating robot to avoid obstacles and at the same time achieve control

objectives is another challenge that has likewise not been well-studied.

When considering the problem of brachiation on flexible structures, common approaches

for control of fully-actuated or underactuated nonlinear dynamical systems can be inves-

tigated to control a wire-borne brachiating robot. These control schemes can be roughly

divided into the categories of optimal control problems, classical state and output feedback

regulators, and control Lyapunov-based approaches, some of them employing adaptive and

robust methodologies to deal with unknown and uncertain conditions. We review the rele-

vant control algorithms that can be leveraged to control an underactuated brachiating robot

over a flexible cable in the following.

With regard to optimal control problems, one common approach in the literature is to

use a library of trajectories to design controllers for constrained nonlinear systems [37, 38,

39, 40]. Tedrake et al. [38, 41] presented the LQR-trees algorithm, which builds a sparse
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tree of LQR-stabilized trajectories [42, 43] and verifies the regions of attraction using Lya-

punov functions. Liu and Atkeson [44] developed a balance controller for a two-link robot

based on a trajectory library and dynamic programming to generate local linear approxi-

mations to an optimal trajectory. A rapidly-exploring random trees (RRT) framework was

used in [45] to plan feasible trajectories for nonlinear dynamical systems including the

Acrobot. However, these methods are often computationally expensive, cannot be imple-

mented in real time, and lack the robustness to uncertainties and disturbances in the model

or environment.

Recent developments in semidefinite programming (SDP) and sum-of-squares (SOS)

optimization [46, 47] have resulted in development of Lyapunov-based state-feedback con-

trollers along with formal guarantees of their region of attraction (for time-invariant sys-

tems), or their invariant sets (for time-varying systems) via sum-of-squares programming

[48, 49, 50, 51, 52], which can accommodate external disturbances and model uncertainties

in the dynamics. These approaches can be mainly categorized into two methods: synthe-

sizing closed-loop controllers while minimizing the outer approximation of the reachable

sets [52], versus feedback control design by maximizing the inner approximation of the

backward reachable sets [48, 53]. While the former method is better suited for real-time

planning in unknown environments, the latter provides the advantage of driving to a pre-

defined goal from a larger set of initial conditions using a single reference trajectory.

In addition to the control methods above which employ sum-of-squares programming,

effective classical approaches in the controls literature for robust control of underactuated

systems include sliding mode control [54, 55, 56], adaptive control [57, 58, 59, 60] and

backstepping [61, 62]. Robust controllers can be employed to mitigate the effects of model-

ing errors and bounded disturbances on a system’s stability and performance. Sliding mode

control [63, 64] is an efficient robust control method that has been widely used to control

systems with bounded disturbances and uncertainties [65, 66], entailing construction of a

surface onto which the error asymptotically converges to zero. However, designing a stable
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sliding manifold is not straightforward for underactuated systems [67]. Moreover, to tune

the constant gains of robust control terms, the bounds of modelling errors and disturbances

need to be known in advance, which is not the case for many applications. Direct adap-

tive methods [68, 69] can be applied to form a time-varying control gain and automatically

compensate for bounded disturbances without the need to know the bounds a priori. Using

a direct adaptive design, instead of identifying the unknown system parameters, the gains

of the control law are directly adjusted by an adaptive update law without any intermediate

calculation so that the desired tracking performance is achieved. Indirect adaptive methods

are particularly common in the robotics control literature [70, 71, 72], where the adaptive

law generates on-line estimates of the unknown parameters of the system dynamics which

then are used to calculate the control law. However, to guarantee parameter convergence

and achieve zero error tracking, adaptive methods rely on the reference trajectory to be

persistently exciting [73], which is not always ensured for dynamical systems. Addition-

ally, the performance of adaptive controllers may be significantly degraded or even lead to

instability if disturbances and unmodeled dynamics are too large in the system.

Nonetheless, none of the classical control approaches reviewed above can handle the

presence of unsafe (obstacle) regions, and each of them has drawbacks that include some

combination of strong performance dependency on initial conditions and/or control chat-

tering phenomena that can be detrimental to actuators.

In recent years, a large body of literature has been created studying control Lyapunov

function (CLF)-based controllers [74], which leverage online quadratic programs (QPs)

to incorporate additional constraints including stability, input-based, and state-dependent

constraints into the control computation [75, 76]. In [77] and [78], it was shown that

CLF conditions and additional constraints can be unified into a single QP framework and

solved online. Rapidly exponentially stabilizing control Lyapunov functions (RES-CLF)

were introduced in [75], which can guarantee exponential stability of periodic orbits in

hybrid systems with a controlled convergence rate. A main assumption in the formulation
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of CLF-QP controllers is that the full dynamic model of the system is known. Robust

and Adaptive CLFs [79] were proposed in [80] and [81] to handle model uncertainty via

quadratic programs for nonlinear hybrid systems such as bipedal walking robots.

To include safety-critical constraints in the control design, control barrier functions

(CBFs) [82, 76] are utilized which convert safety constraints into linear inequality con-

straints that can be incorporated into quadratic programs. Exponential control barrier func-

tions are developed in [83] to expand the use of CBFs for constraints with relative-degree

higher than 1. Barrier states (BaS) are introduced in [84], which, when embedded in a

control system’s model, can avoid the conflict between control objectives and safety con-

straints in a QP-based control design. Nevertheless, the development of CLFs and CBFs in

the domain of brachiating robots has not been investigated to date.

While an extensive body of brachiation control research has been established, a key

missing element in prior work is treatment of a flexible support in the context of modeling

and control, which is a major focus of this thesis as will be detailed in Section 1.4. To the

best of our knowledge, none of the prior works in the literature has addressed the problem

of brachiating on a vibrating medium, nor can handle the uncertainties and challenges

introduced by a flexible cable in a system.

1.4 Structure of Thesis and Contributions

While a strong foundational knowledge base underpins the field of brachiating robots, the

work proposed here aims to advance the state-of-the-art in this domain so that brachiating

robots become viable mobile robots for real world applications.

The structure of this work proceeds as follows. In Chapter 2, we present the devel-

opment of high-fidelity and approximate multi-body dynamic models to formulate deter-

ministic and stochastic equations of motion for underactuated brachiating robots attached

to flexible cables. The proposed methods enable the underlying control systems to capture

the dynamic effects of the cable on the robot and account for the relative vibrations and col-
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lisions taking place between the robot’s grippers and the cable. The approximate dynamics

models enable inclusion of parametric model uncertainties in the system.

Development of an optimal trajectory generation framework for the robot-cable system

is presented in Chapter 3. A major advantage offered by the trajectory framework lies in the

treatment of a flexible support in the context of optimal control. The proposed parametric

trajectory optimization approach reduces the computational complexity in the nonlinear

optimization program, and enables the resulting framework to employ the high-fidelity

dynamic model and explicitly accounts for the flexible cable dynamics when generating

optimal swing trajectories.

A closed-loop stabilizing controller based on the time-varying LQR algorithm is pre-

sented in Chapter 4. The resulting feedback control framework is used in conjunction with

the feedforward optimal trajectory, in order to correct for disturbances and drive the system

toward its desired final states. The control is made robust to time-delays and perturba-

tion by incorporating a variable look-ahead scheme implemented by reparameterizing the

trajectory in terms of system states rather than time.

In Chapter 5, building on the work on optimal trajectory generation and TVLQR con-

troller presented in the previous chapters, we use semidefinite programming (SDP) and

sum-of-squares (SOS) optimization to synthesize a time-varying feedback control with for-

mal robustness guarantees to account for model uncertainties and unmeasurable states in

the system. Simulations and comparison with the TVLQR controller demonstrates that

the proposed robust controller results in relatively large robust backward reachable sets in

the presence of parametric model uncertainties, actuator limits, and unobservable states.

The proposed design leads to the first SOS-based robust controller design in the domain of

underactuated brachiating robots.

A novel estimation-based approach to model the interactions between the flexible cable

dynamics and the robot without using any sensors is presented in Chapter 6. Moreover, the

formulation of a combined direct-indirect adaptive sliding mode control (ASMC) scheme

14



for wire-borne underactuated brachiating robots in the presence of parametric uncertainties

and unmodeled dynamics is presented, along with formal stability analysis and adaptation

law derivations for the proposed control design using a Lyapunov stability argument. The

superiority of the proposed controller over the widely used input-output feedback lineariza-

tion method for underactuated systems is presented through simulation experiments. The

proposed design leads to an adaptive robust control framework that compensates for the un-

known cable force without knowing the bound of discrepancy between the approximated

and actual force a priori, enabling underactuated brachiating robots to traverse flexible ca-

bles in an online fashion.

In Chapter 7, robust control Lyapunov and barrier functions are designed and incorpo-

rated into quadratic programs to synthesize a unified adaptive QP control framework for

the wire-borne brachiating robot. The proposed control design formally guarantees the sta-

bility and safety of the robot in the presence of dynamic uncertainties, actuator constraints

and obstacles in the environment. Stability analysis and derivation of adaptation laws are

carried out through a Lyapunov analysis. Simulation results and comparisons with a base-

line controller show that the proposed quadratic programming-based controller achieves

reliable tracking performance and disturbance estimation in the presence of unstructured

uncertainties, actuator limits and safety constraints.

Design and fabrication of a novel and scalable mechanical brachiating robot, including

a novel gripper design, distributed embedded systems and software architecture develop-

ment is presented in the first part of Chapter 8. The proposed robot design presents a break-

through improvement in brachiating robot technology that is a prerequisite for practical use

in real-world applications.

In the second part of Chapter 8, we perform hardware experimental validation for the

proposed feedback control strategies by conducting real-world experiments on the robot

prototype traversing a flexible cable. The experimental results provide the first hardware

evaluation of locomotion techniques for wire-borne underactuated brachiating robots in an
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experimental setting.

Finally, in Chapter 9, we conduct an extensive Monte Carlo analysis to characterize

and compare the performance of the proposed control algorithms with regard to different

evaluation metrics. An exploration of trade-offs between the proposed control schemes

will inform critical decision making for selecting planning and control strategies needed to

ensure reliable locomotion of wire-borne brachiating robots in real-world applications.

The conclusions of this work and future directions are addressed in Chapter 10. The

proposed multi-body dynamic models, trajectory optimization frameworks, and feedback

control algorithms presented in this thesis may prove highly useful in real world applica-

tions in which brachiating robots must traverse elevated wires, tree limbs, or other non-rigid

support structures.
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